Specialized Orthonormal Frames and Embedding

نویسنده

  • Frank B. ESTABROOK
چکیده

We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-forms of the framing. The embeddings can be isometric, as in minimal surfaces or Regge–Teitelboim gravity, or torsion-free, as in Einstein vacuum gravity. Involutive exterior differential systems are given, and their Cartan character tables calculated to express the well-posedness of the underlying partial differential embedding and specialization equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

FUSION FRAMES IN HILBERT SPACES

Fusion frames are an extension to frames that provide a framework for applications and providing efficient and robust information processing algorithms. In this article we study the erasure of subspaces of a fusion frame.  

متن کامل

On a new G-frame and duality

We introduce a new g-frame (singleton g-frame), g-orthonormal basis and g-Riesz basis and study corresponding notions in some other generalizations of frames.Also, we investigate duality  for some kinds of g-frames. Finally, we illustrate an example which provides a  suitable translation from discrete frames to Sun's g-frames.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013